
1.  Introduction
The COVID-19 pandemic outbreak has reshaped normal social and economic activities dramatically, re-
sulting in sudden changes in the emissions of air pollutants and their precursors. Recent air quality-re-
lated studies predominantly focus on the impacts of plunged nitrogen oxides (NOx) emission (Bauwens 
et al., 2020; Liu et al., 2020; Menut et al., 2020; Venter et al., 2020; Zangari et al., 2020; R. Zhang et al., 2020) 
on particulate matters (Chang et al., 2020; G. He et al., 2020; Kumar et al., 2020; Shi & Brasseur, 2020; Venter 
et al., 2020; Zangari et al., 2020) and surface ozone (G. He et al., 2020; Le et al., 2020; Shi & Brasseur, 2020; 
Siciliano et al., 2020; Venter et al., 2020). Here, we use formaldehyde (HCHO) columns from the TROPO-
spheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012) to examine global changes in HCHO 
at the early stage of the COVID-19 pandemic (hereafter defined as January–April 2020) and relate them to 
variations in anthropogenic emissions of non-methane volatile organic compounds (NMVOCs), tempera-
ture, and open fires.

HCHO is detectable from space as a vertical column density (VCD) using solar ultraviolet backscattered ra-
diation between 325 and 360 nm (Chance et al., 2000). Owing to its short atmospheric lifetime (a few hours 
against oxidation and photolysis) and high production yields from the oxidation of NMVOCs, HCHO VCD 
has been applied as a localized proxy for NMVOC emissions from biogenic sources (Palmer et al., 2003; 
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Shim et  al.,  2005; Surl et  al.,  2018; Y. Zhang et  al.,  2019), anthropogenic sources (Fu et  al.,  2007; Shen 
et al., 2019; L. Zhu et al., 2014), and open fires (Gonzi et al., 2011; Shim et al., 2005; Y. Zhang et al., 2019).

In this study, we use HCHO data available from the recently launched TROPOMI to examine how HCHO 
changes from January–April 2019 to January–April 2020, building on our oversampling method (Sun 
et al., 2018; L. Zhu et al., 2014; L. Zhu, Jacob, et al., 2017), and identifying significance through allocating 
satellite pixels by their corresponding temperatures (L. Zhu, Mickley, et al., 2017)

2.  Significant Changes in TROPOMI HCHO Columns
TROPOMI is a nadir-viewing hyperspectral spectrometer onboard the Copernicus Sentinel-5 Precursor 
platform launched in October 2017. It scans the whole globe daily at a local time of 13:30. We use the TRO-
POMI HCHO product (De Smedt et al., 2018) based on the technical heritage of retrieving HCHO from the 
Global Ozone Monitoring Experiment (GOME), GOME-2, and Ozone Monitoring Instrument (OMI) (De 
Smedt et al., 2018). TROPOMI HCHO product offers the finest nadir spatial resolution (7 km × 3.5 km, 
upgraded to 5.5 km × 3.5 km since August 2019) with a high signal-to-noise ratio among currently available 
HCHO products. The product correlates highly with Multi-AXis Differential Optical Absorption Spectros-
copy (r = 0.88) and Fourier-transform infrared (r = 0.91) measurements with a mean bias ranging from 
−26.0% to +30.8%, depending on locations (Chan et al., 2020; Vigouroux et al., 2020).

We select TROPOMI level-2 pixels with (1) quality assurance value greater than 0.5, (2) cloud fraction less 
than 0.3, and (3) solar zenith angle less than 60°. This study focuses on examining significant mean changes 
in HCHO columns from January–April 2019 to January–April 2020, rather than investigating daily or week-
ly variations. We follow L. Zhu, Mickley, et al. (2017) to group TROPOMI pixels by their associated temper-
atures to identify significant changes between the two periods. Unlike focusing on a long-term HCHO trend 
in L. Zhu, Mickley, et al. (2017), those changes between two sets of 4-month observations are still influenced 
by monotonous temperature changes.

Briefly, we first assign a temperature value to each level-2 pixel based on its location and observing time, 
using hourly surface air temperature data (0.5° × 0.625°) from the Modern-Era Retrospective Analysis for 
Research and Applications, version 2 (MERRA-2) (Gelaro et al., 2017). We then allocate all pixels into 200 
temperature bins ranging from 273 to 323 K with an increment of 0.25 K. For each bin i, we use our over-
sampling method (Sun et al., 2018; L. Zhu et al., 2014; L. Zhu, Jacob, et al., 2017) to map mean January–
April HCHO columns in 2019 and 2020 onto 0.5° × 0.5° grids (j), denoted as , ,2019Ωi j  and , ,2020Ωi j , respec-
tively. We determine this spatial resolution based on a satellite detection capability and overlapping pixels 
amount over a grid cell. The change in HCHO columns in temperature i for grid cell j is written as

 , , ,2020 , ,2019ΔΩ Ω Ωi j i j i j� (1)

We further compute the change for each grid cell j (ΔΩ j) as the mean of changes across all bins with at least 
30 overlapping pixels, weighted by the total number of overlapping pixels in each bin:

  


 
, , ,2019 , ,2020

, ,2019 , ,2020

ΔΩ
ΔΩ i i j i j i j

j
i i j i j

N N

N N
� (2)

where Ni,j,2019 and Ni,j,2020 represent the number of overlapping pixels for grid cell j in temperature bin i for 
January–April of 2019 and 2020. We consider only grid cells with values from at least 50 temperature bins 
so that each ΔΩ j is contributed by more than 1,500 pixels. We restrict our following analysis to grid cells 
with significant nonzero ΔΩ j, determined with the t test (p-value < 0.05). Here and elsewhere, changes in 
TROPOMI HCHO columns are significant, unless otherwise stated. We also try a finer spatial resolution of 
0.05° × 0.05° and 0.25° × 0.25° but find that it becomes difficult to obtain statistically significant outcomes 
from smaller sample sizes.
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3.  Results and Discussions
As shown in Figure  1(a), HCHO columns decline on average by 
11.0% ± 2.8% in the Northern China Plain (NCP) at the early stage of the 
COVID-19 pandemic compared with the same period in 2019. Such a de-
crease is not driven by temperature (+0.7 K; Table S1) and not fully due to 
meteorological variations which only result in a 5.7% decrease in HCHO 
columns (Table S1). HCHO reductions are generally located at grid cells 
with predominant declines in NO2 columns (Figure 1(b)) and relatively 
high anthropogenic NMVOC emissions (Figure 1(c)), suggesting a link-
age between reductions in HCHO columns and perturbations of anthro-
pogenic emissions resulting from the massive lockdown. However, such 
a linkage is likely complicated by (1) varying HCHO production yields 
resulted from different NOx levels (Wolfe et  al.,  2016; L. Zhu, Mickley, 
et al., 2017) as Chinese NOx emission plunges in this period (Bauwens 
et al., 2020; Feng et al., 2020; Liu et al., 2020; Miyazaki et al., 2020; Shi & 
Brasseur, 2020) and (2) changing anthropogenic NMVOC emissions in the 
NCP, a region characterized by intense industry activities (Li et al., 2019).

To tease out contributions by the above two factors, we conduct a se-
ries of sensitivity simulations with the GEOS-Chem (http://www.ge-
os-chem.org, version 12) 3-D chemical transport model. We scale down 
NOx and NMVOC emissions to simultaneously reproduce the mean re-
duction in NO2 (42.2%) and HCHO (11.0%) column seen by TROPOMI 
in the NCP. GEOS-Chem is reliable in modeling the observed relation-
ship between HCHO columns and NMVOC emissions (Fu et al., 2007; 
Palmer et al., 2003; Shen et al., 2019; Surl et al., 2018; L. Zhu et al., 2016, 
2020) under various NOx conditions (Travis et  al.,  2016; L. Zhu, Mick-
ley, et al., 2017). Here, we run the GEOS-Chem model (2° × 2.5°) from 
January 2018 to April 2020, driven by the MERRA-2 meteorological 
fields (Gelaro et al., 2017). The model uses biogenic VOC emissions from 
the MEGAN v2.1 (Guenther et al., 2012), open fire emissions from the 
fourth-generation global fire emissions database (Giglio et al., 2013), and 
anthropogenic emissions from the MIX inventory (Li et al.,  2017) over 
Asia. We sample GEOS-Chem outputs according to the TROPOMI sched-
ule and then grid the model results to the same 0.5° × 0.5° grids of sat-
ellite observations. We acknowledge the coarse model resolution, which 
may not lead to biases as small-scale nonlinearities may have an insignif-
icant impact on regional analysis (Yu et al., 2016).

Figure 2 summarizes how modeled mean NO2 and HCHO columns in the 
NCP respond to the scaling-down of NOx and NMVOC emissions. NO2 
column reduction correlates almost linearly with the decrease in NOx 
emissions on the regional scale. GEOS-Chem reproduces the observed 
reduction in mean NO2 column (42.2%) in the NCP when applying a uni-
form decrease of 36.0% in anthropogenic NOx emissions. The result takes 
the difference in meteorological conditions between 2019 and 2020 into 
consideration by running the GEOS-Chem model with corresponding 
meteorological fields. Our finding is consistent with the recently estimat-

ed reductions in NO2 (40%–60%) and NOx (36%–48%) in China during the COVID-19 pandemic (Bauwens 
et al., 2020; Feng et al., 2020; Liu et al., 2020; Miyazaki et al., 2020; Shi & Brasseur, 2020).

We see from Figure 2(a) that the declining NOx emission leads to additional lower HCHO columns in the 
NCP. This is due to the slower conversion of HO2 to OH caused by lower NO, which decelerates HCHO 
production from the oxidation of NMVOCs (Wolfe et al., 2016; L. Zhu, Jacob, et al., 2017; L. Zhu, Mickley, 
et al., 2017). Reducing NOx emissions by 36.0% as constrained by TROPOMI NO2 observations results in 
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Figure 1.  Significant changes in mean TROPOMI HCHO columns at 
the early stage of the pandemic (defined as January–April 2020) in (a) 
Northern China and its respective relations to (b) changes in TROPOMI 
NO2 columns and (c) anthropogenic NMVOC emissions. Changes are 
computed as the difference in mean columns from January–April 2019 
to January–April 2020. The blue and green dots in (b) and (c) represent 
individual 0.5° × 0.5° grid cells with HCHO changes in the Northern 
China Plain (NCP; the blue box in (a); 112°E−120.5°E, 31.5°N–37.5°N) and 
Northwestern China (the green box in (a); 103°E−108.5°E, 36°N–41°N), 
respectively. The red box (114.5°E−119°E, 39°N–40.5°N) contains several 
grid cells near Beijing. TROPOMI NO2 pixels (van Geffen et al., 2020) 
are selected using the same criteria as HCHO pixels (see text) and are 
oversampled (without being grouped by temperatures) onto the 0.5° × 0.5° 
grids for the respective two periods. Anthropogenic NMVOC emissions 
are from the mosaic Asian anthropogenic emission inventories (MIX) (Li 
et al., 2017). TROPOMI, TROPOspheric Monitoring Instrument; NMVOC, 
non-methane volatile organic compound.

http://www.geos-chem.org
http://www.geos-chem.org
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only a 7.7% decline in the mean HCHO column in the NCP, inconsistent with the reduction according to 
TROPOMI (11.0%; Figure 1). This suggests that anthropogenic NMVOC emissions in the NCP probably 
also decrease at the early stage of the pandemic. Our simulations (Figure 2(b)) show that introducing an 
additional 15.0% reduction in anthropogenic NMVOC emissions is necessary to fill the gap, simultaneous-
ly reproducing observed mean reduction in both NO2 and HCHO columns in the NCP. Here, the scaling 
factors are applied to all emission sectors. We acknowledge that NOx and NMVOC emissions from some 
sectors may have changed differently during the lockdown, and detailed atmospheric chemical relationship 
in urban scale deserves future exploration.

Figure 1(a) also shows that the mean HCHO column increases on average by 8.4% ± 4.2% over a few grid 
cells near Beijing. We attribute this to a faster HCHO production rate through the oxidation of NMVOCs, 
driven by higher OH levels as NOx emission decreases (by 17.0%, according to TROPOMI NO2 columns) 

in a NOx-saturated regime. GEOS-Chem results confirm that the mean 
surface OH level increases by 14.5%  ±  3.3% in this region during this 
period due both to a reduction in NOx emissions (8.2%) and changes in 
meteorological conditions (6.3%).

The mean HCHO column raises by 14.2% ± 3.1% in Northwestern Chi-
na (Figure 1(a)). This region is characterized by weak reductions in NO2 
columns (Figure 1(b)) and low anthropogenic NMVOC emissions (Fig-
ure  1(c)), implying variations in meteorological conditions rather than 
anthropogenic emissions as the main driver. The surface temperature 
increases by 1.0 K on average, which translates to an increase of 11.1% 
in HCHO columns (Table S1), assuming an exponential dependence on 
temperature (Palmer et  al.,  2006; L. Zhu et  al.,  2014). Acknowledging 
such temperature dependence is from regional/local studies, we attrib-
ute HCHO changes here qualitatively to temperature variations. GE-
OS-Chem fails to reproduce the HCHO increase in this region (Table S1), 
implying the impact of temperature has likely been over-compensated by 
other factors in the model when HCHO is low.

In Figure 3, we extend our analysis to examine global changes in HCHO 
columns at the early stage of the pandemic. In India (Region 2), the mean 
HCHO column decreases by 7.0% ± 2.9% on a subcontinental scale, con-
sistent with modeled reduction (6.3%) due to meteorological difference 
(Table S1). HCHO reduction is also roughly consistent with an estimated 

SUN ET AL.

10.1029/2020GL091265

4 of 7

Figure 2.  Responses of modeled reductions in mean NO2 and HCHO columns in the Northern China Plain (NCP) 
to the scaling-down of NOx and NMVOC emissions. (a) Reductions in mean NO2 (black dots) and HCHO columns 
(red triangles) due to declining NOx emissions. The black dashed line demonstrates the decrease (42.2%) in mean NO2 
columns from January–April 2019 to January–April 2020 in the NCP, as observed by TROPOMI. (b) Reductions in mean 
HCHO columns (red triangles) due to declining NMVOC emissions (with a fixed reduction of 36.0% in NOx emission 
to match the observed decrease in TROPOMI NO2 columns). The red dashed line shows the reduction (11.0%) in mean 
HCHO columns according to TROPOMI. Model results are from a series of GEOS-Chem sensitivity simulations run at 
2.0° × 2.5°. NMVOC, non-methane volatile organic compound; TROPOMI, TROPOspheric Monitoring Instrument.

Figure 3.  Global significant changes in HCHO columns (0.5° × 0.5°) 
at the early stage of the pandemic, computed as the difference in mean 
TROPOMI HCHO columns from January–April 2019 to January–April 
2020. Changes in 10 regions are examined in the text and labeled in order 
1–10: Northern China (same as the domain shown in Figure 1(a)), India, 
Southern Africa, Eastern Brazil, Southern Cone, Southeastern Australia, 
Southeast Asia, Central Africa, Central America, and the Southwestern 
United States and Northern Mexico. TROPOMI, TROPOspheric 
Monitoring Instrument.
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reduction (9.8%) when applying the temperature dependence (Table S1). Those findings likely reflect the 
dominant influence of temperature (−0.9 K) in biogenic isoprene emission, thus on HCHO columns in 
India (Surl et al., 2018). We observe similar temperature-dominated influence on HCHO columns in South-
ern Africa (Region 3; −11.7% ± 6.4%), Eastern Brazil (Region 4; −10.1% ± 4.6%), Southern Cone (Region 5; 
+13.5% ± 5.1%), and Northeastern Thailand in Southeast Asia (Region 7; −11.2% ± 2.5%), where regional 
mean temperature changes respectively by −1.8, −1.0, +0.8, and −1.4 K, as summarized in Table S1.

The increase in HCHO columns in Southeastern Australia (Region 6; 17.5% ± 10.7%) may be traced to ex-
ceptionally high open fire emissions at the beginning of 2020, but not meteorological variations (Table S1). 
Using the Global Fire Assimilation System (GFAS) data (Kaiser et al., 2012), we find mean non-methane hy-
drocarbon (NMHC) emission flux increases by a factor of ∼7.0 in this region. We see similar correlations be-
tween changes in HCHO columns and fire activities in Northeastern Myanmar in Southeast Asia (Region 7; 
+14.9% ± 3.4%), Central Africa (Region 8, +7.8% ± 3.7%), and Central America (Region 9; +18.9% ± 7.8%), 
where regional mean NMHC emission flux changes by +28.4%, +18.5%, and +19.5%. Those regions are 
known for high fire-driven HCHO columns (Marbach et al., 2008; Stavrakou et al., 2015). However, quanti-
fying the impact of fire emissions on HCHO columns is challenging because of the uncertainties in diurnal 
variations and emission factors of wildfires. In the Southwestern United States and Northern Mexico (Re-
gion 10), the mean HCHO column increases by 12.2% ± 0.1% with unclear reasons (Table S1).

The lack of significant anthropogenic signals outside the NCP at the early stage of the COVID-19 pan-
demic (Figure 3) is consistent with the lockdown timeline worldwide. We acknowledge that the absence 
of TROPOMI HCHO observations before May 2018 limits the long-term analysis of HCHO columns. Al-
though OMI HCHO (González Abad et al., 2015) has been widely used for long-term trend analysis (De 
Smedt et al., 2015; Shen et al., 2019; L. Zhu, Mickley, et al., 2017b; S. Zhu et al., 2018), we find OMI fails 
to detect significant HCHO changes (Figure S1 and Text S1). This is due to inadequate valid observations 
from OMI, thus emphasizing the value of TROPOMI data. Future studies to investigate interannual and 
urban-scale variabilities in HCHO columns and NMVOC emissions may become available as a longer span 
of TROPOMI HCHO product or Geostationary HCHO observations (Kim et al., 2020; Kwon et al., 2019) 
are ready.

4.  Conclusion
We have used TROPOMI satellite observations to examine significant changes in HCHO columns at the 
early stage of the COVID-19 pandemic over the globe. We find regional decline driven by reduced anthropo-
genic nitrogen oxides (NOx) and NMVOC emissions in the NCP. Regional changes in Northwestern China, 
India, Southern Africa, Eastern Brazil, Southern Cone, and Northeastern Thailand may be traced to varia-
tions in temperatures. The impact of open fires on HCHO columns is also identified in Southeastern Aus-
tralia, Northeastern Myanmar, Central Africa, and Central America. Our study highlights the importance 
of TROPOMI satellite observations in understanding variations in anthropogenic emissions by providing 
evidence from space.

Data Availability Statement
The GEOS-Chem 3-D Chemical Transport Model is available at http://www.geos-chem.org.
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